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Abstract

We develop a methodology for characterizing the superposi-
tion process of N > 2 discrete-time arbitrary on/off sources.
The superposition is a discrete-time semi-Markov process
with O(22Y) states. We use the superposition model to an-
alyze a finite-buffer statistical multiplexer with multiple ar-
bitrary on/off input sources. We study the effect of various
traffic parameters on the queueing performance.
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1 Introduction

In an ATM environment many types of traffic, such as voice,
data, and video, are to be efficiently transported by the same
network. An ATM multiplexer receives cells (fixed size pack-
ets of 53 octets length) from a number of different incoming
links and then transmits them out onto a single outgoing
link. A finite buffer is provided in the multiplexer to accom-
modate the multiple arrivals of cells. Each arrival stream is
modeled by a bursty and possibly a correlated process. The
service time is deterministic and is equal to one slot of the
outgoing link which is assumed to be long enough to transmit
one cell.

The analysis of such a queueing system is quite complex
due to the large number of arrival processes. A possible
method for approximately analyzing the queue is to first
characterize the superposition process of all arrival processes,
and then analyze the queue with a single arrival process.
The problem of characterizing the superposition process of
a set of arrival processes has been addressed extensively in
the literature. One approach for obtaining the superposition
process is to approximate it by a renewal process, see Al-
bin [1], Whitt [21], Sriram and Whitt [17], and also Perros
and Onvural [15]. Heffes and Lucantoni [10] considered the
superposition process of packetized voice sources. They ap-
proximated
the superposition by a Markov Modulated Poisson Process
(MMPP). The accuracy of the model is reasonable when the
average delay in the multiplexer is the amount of paramount
importance. However, it did not provide a good estimate
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for the packet loss probability. Several other authors (see
[3, 13, 20]) suggested alternative methods for characterizing
the superposition process of on/off sources as an MMPP in
order to improve the accuracy with regards to calculation of
the cell loss probability. Also, Heffes [9] obtained an MMPP
approximation to the superposition of different MMPP ar-
rival processes using a set of simple expressions.

An alternative method to analyze statistical multiplexers
is the Uniform Arrival and Service (UAS) model (also known
as fluid flow). In this case an on/off process produces a uni-
form flow of bits when in the on state. Cell departures are
modeled as a uniform flow out of the queue. Anick, Mitra,
and Sondhi [2] evaluated the system performance using sim-
ple expressions for a multiplexer with infinite buffer space
and homogeneous arrival processes. Tucker [19] considered
the finite buffer case. The methodology was generalized to
the case of heterogeneous Markov Modulated Rate Processes
in a series of papers [18, 7, 6].

In this paper we develop a methodology for characterizing
the superposition process of N > 2 discrete-time arbitrary
on/off sources. The superposition is a discrete-time semi-
Markov process with O(22V) states. The major advantage
of this methodology is that it provides a uniform framework
in which a variety of traffic types can be handled. We use
the superposition model to analyze a finite-buffer statistical
multiplexer with multiple input arbitrary on/off sources. We
study the effect of various traffic parameters on the queueing
performance. The results obtained show the need for captur-
ing the effect of the distribution of the on and off periods in
call admission control and bandwidth allocation.

2 The Arbitrary On/Off Source

A popular model for traffic processes in an ATM environ-
ment is the on/off source. It is used extensively for modeling
voice as well as other types of traffic. A common practice
is to assume that the on and off periods have a geometric
or exponential distribution to simplify the analysis. This
assumption may not be adequate for many practical cases
as shown by traffic measurements [14]. Moreover, earlier re-
sults by Kosten [12] indicate that even in the asymptotic case
when the number of sources approach infinity, the effect of
the periods distribution does not vanish.



We consider the discrete-time arbitrary on/off source as
a versatile traffic model in which the on and off periods dis-
tribution is allowed to have an arbitrary discrete probability
density function (PDF). Our goal is to study the effects of the
distribution of the periods on the performance of a statistical
multiplexer in an ATM network. In our model, successive on
and off periods are independent and are mutually indepen-
dent. For source 7, the distributions of the off and on periods
are specified by the arbitrary probability density functions
inff (k) and fO"(k) respectively. In this paper we consider
the special case when all sources emit one ATM cell per time
slot during the on period and assume that all sources have
the same slot size (speed).

2.1 The Superposition of Multiple Arbi-
trary On/Off Sources

In [5], we introduced a methodology for approximately char-
acterizing the superposition process of multiple discrete-time
semi-Markov processes in terms of yet another semi-Markov
process. We provided an algorithmic procedure for comput-
ing the semi-Markov kernel of the superposition process. It
is clear that an arbitrary on/off source is in essence an al-
ternating renewal process which can be characterized as a
semi-Markov process. It is therefore possible to model an ar-
bitrary on/off source, say source i, as a special semi-Markov
process with state space {0, 1}, where 0 and 1 denotes the off
and on states respectively, and with a semi-Markov kernel
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We are now in a position to specialize the results in [5] to

the case of arbitrary on/off sources. Consider N > 2 possibly
heterogeneous arbitrary on/off sources. The superposition
state is observed at those instants in time when one or more
of the component processes change state from on to off or
vice versa. The superposition state is described by the tuple
[(z1,t1), (22,t2), -, (zn,tN)] where z; € {0, 1} is the state
of source ¢ and ¢; € {0, 1} is such that t; = 1 iff process ¢
changes state. The state space = of the superposition process
is given by
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The number of states in the superposition is obviously equal
to 2V (2N — 1).

In order to fully characterize the superposition process we
must find the the kernel @ = [¢(u,v, k)], where ¢(u, v, k) is
the probability that given the superposition is currently at
state u and that the next state would be v, the sojourn time
would be equal to k, where u and v € E and k > 1. In [5],
this is given by:

where ¢; (u, v, k) is calculated as follows. Let (z;(s),%i(s)) be
the state of source ¢ when superposition is at state i. Let
FPP T (k) = 3052, £ (j) and Fem(k) = 327, 7 (5) be the
cumulative probability distribution functions of the off and
on periods of sources i respectively. Also, let fioff(k’) and
fe (k) be the residual life-time distribution of the off and
on periods of source i respectively. Define the associated
cumulative probability distribution functions F¢// (k) and
F27 (k) accordingly. Given values of ¢;(u) at the origin state
u and t;(v) at the destination state v, the following four cases
are possible:

I- ¢;(u) = t;(v) = 0. In this case we have z;(u) = z;(v),
i.e. source ¢ does not change state in either state u or
v. The probability of such an event to occur for source
1 is approximately given by

| _ [ E (k) i) =0
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II- ¢;(u) = 0 and ¢;(v) = 1. In this case source i changes
state at v but not at u. Since source ¢ has not changed
state at u, the probability that this event occurs is

FIT (k) it ()
k) if zi(u) =

¢i(u: v, k) = { 0
1
ITI- ¢;(u) = 1 and t;(v) = 0. In this case source i changes

state at u but not at v. The probability that this event
occurs is

1—Fioff k) if z;(u
¢mw“:&_wﬁfﬂm8=

0
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IV- t;(u) = t;(v) = 1. In this case source i changes state at
both u and v. The probability that this event occurs is
given by

¢i(u, v, k) = {fioff(k) if 2i(u) = 0

k) ifei(u) =1
Note that in a state u € = of the superposition source, we
have a(u) arrivals per slot where a(u) = Zf\;l z;. In [5], we
have shown that this model provides an accurate approxi-
mation of the actual superposition. Also in [5], a compu-
tationally efficient algorithm based on the notion of state
aggregation has been developed, but it is not accurate for

some types of traffic sources.

3 Analysis of a Statistical Multi-
plexer with Multiple Arbitrary
on/off Input Sources

We consider a FIFO finite buffer multiplexer serving N > 2
arbitrary on/off sources. The multiplexer has S > 1 servers
and can accommodate a total of B > S cells at any time
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Figure 1: Timing of events in the early arrival model.

instant including those in service. The service time for all
cells is constant and is equal to one time slot. The multi-
plexer can serve S cells every time slot. We assume that
N > S, otherwise no queue will ever form in the multiplexer
and the problem will be trivial to handle. Also, we assume
that all sources and the multiplexer output link(s) have the
same speed.

We seek the steady state probabilities, w(n), 0 < n <
B — S, that there are n cells in the multiplexer’s queue.
From this we can obtain other measures of interest such as
the mean queue length, the probability of full buffer and the
cell loss probability.

Let us first discuss the timing of events in our system. We
follow an early arriwal timing model as defined by Hunter
[11]. That is, during an arbitrary time slot, the sequence of
events is as follows: a state transition in the superposition
may occur, followed immediately by cell arrivals (if any),
which is followed by service of waiting cells if there are any,
and finally departure of cells that received service.

The superposition process of the N sources is first char-
acterized as a SMP as described in section 2. Let M =
2N (2 — 1) be the number of states of the SMP, with states
numbered 0,1,---, M — 1 and Q = [¢(z,y, k)] be its semi-
Markov kernel. Let a(h) be the number of active sources at
state h € {0,1,---, M — 1} of the superposition process.

System State: The system state at any particular slot is
described by the pair (n, h) where 0 < n < B—S is the num-
ber of cells in the multiplexer buffer at the beginning of the
slot (not counting the cells that are to arrive at this slot) and
0 < h < M —1 is the current state of the superposition pro-
cess. We note here that the process (n, h) at successive time
slots does not form a Markov chain. This is due to the non-
Markovian nature of the superposition process. However, by
observing the system at instants immediately after the su-
perposition process experiences a state transition, the states
(n, h) at these instants form an embedded Markov chain since
successive states visited by a SMP form a Markov chain.

Solution Method:

o The embedded probability transition matrix P govern-
ing transitions between all possible states (n, h) is gen-
erated.

e The embedded steady state probabilities 7(n, h) are cal-

culated.

e Finally, the arbitrary point probabilities of observing
state (n, h), m(n, h), are obtained from 7(n, h).

The two fundamental technical difficulties that arise here are
generating the matrix P and the calculation of 7(n, h) from
7(n, h).

Generation of the Probability Transition Matrix:
Consider the queue occupancy evolution process at the mul-
tiplexer. Assume that the superposition has just made a
transition to state h and that the number of cells in the mul-
tiplexer immediately before that transition occurs was ng.
During the time interval at which the superposition process
is in state h, a(h) cells arrive at the beginning of each slot.
At each time slot, if the number of newly arrived cells plus
the number already in the system is greater than B, then the
excess cells are dropped randomly. By the end of a time slot
a maximum of S cells in the multiplexer (possibly including
those who have just arrived) are served. Assume that the
superposition is in state h and that it makes a transition to
state h' in k slots. Also, assume that the number of cells
in the multiplexer when the superposition process made the
transition to state h was ng. Then, the number of cells in the
multiplexer after r slots can be calculated using the following
recursive equation:

ny = maz (0, min(n,—1 +a(h),B)—S), r=1,2,--- (1)

By applying the above equation k times we can find the
number of cells in the multiplexer k slots after a transition
to state h occurs. By conditioning on the probability that
superposition makes a transition from state h to state R in
k steps, we increment the probability of going from state
(ng, h) to state (ng, hl) by q(h, hl,k). The algorithm in fig-
ure 2 is used for generating the probability transition matrix
P = [pl(n,h), (n',1)]]:

Once the probability transition matrix P is generated, we
solve for the invariant probability vector #(n, h) which is the
probability of observing the queueing system in state (n, h)
given that the superposition process has just undergone a
state transition.

Arbitrary-time Probability Calculation: The key to the
calculation of the arbitrary-time probability distribution of
the queue occupancy is that the system evolution is deter-
ministic given a specific state h of the superposition process,
an initial queue occupancy level ng, and the number of slots
k measured from the instant when the superposition process
moved to state h.

Let the state of the system at an instant where a transi-
tion occurs be (ng, h). Let us assume that the superposition
process makes a transition to state h’ after £ > 0 slots with
probability ¢(h, h', k). Then, all states (n,, h), 1 <r < k-1,
where n, is calculated using equation 1, will be observed with
probability one, conditioned on the initial state (ng, k) and
that a transition from state h to state A’ occurs in [ > k
slots. Probabilities 7(n, h) can then be calculated using the
algorithm shown in figure 3. Note the essential normalization
step.




o Let p[(n, h), (nl, hl)] = 0 for all states.
o For all states (ng, h) do

* For all values of k and k'

* Find ng using equation 1

* If q(h, k', k) # 0 then let p[(no, k), (ng, h')] = p[(no, k), (nk, B)] + q(h, h', k)

Figure 2: The algorithm for generating the probability transition matrix.

o For all states (ng, h) do
¢ For all possible states h’
For all possible values of [

If q(h,h",1) # 0 then

o Let k = Z(n,h) n(n, h)

o For all states (n, h), let w(n, h) =0

for all values of k, 0 < k <
Find ng from equation 1

Let m(ng, h) = w(ng, h) + 7(no, h) q(h, h' k)

o For all states (n, h), let 7(n, h) =

n(n,h)

(Normalization)

Figure 3: The algorithm for calculating the arbitrary-time probability

Once the arbitrary point probabilities m(n, h) have been
found, performance measures of the multiplexer like the
mean queue length and the cell loss probability can be ob-
tained. The mean queue length can be easily obtained from
the probabilities 7(n, h). The probability of loss P(Loss) is
calculated as follows:

Y2 pmin(n+a(h)— B,0)7(n, k)

PlLoss) = . 3 alhyn(m, b)

(2)

which is equal to the average loss rate divided by the average
arrival rate.

Validation of this methodology for analyzing a multiplexer
with multiple arbitrary on/off input sources appeared in [5]
and its accuracy was shown to be satisfactory.

4 Study of the Effect of Traffic
Parameters on Queueing Perfor-
mance

In this section, we conduct a study of the effect of various
traffic parameters on the performance of the statistical multi-
plexer. We use the method developed in the previous section
for obtaining the performance metrics.

4.1 Effect of the Distribution of the On and
Off Periods on the Multiplexer’s Perfor-

mance

In this section, we study the effect of the distribution of the
In the
literature, it is common to approximate the distribution of

on and off periods on the multiplexer’s behavior.

sojourn times in a state by a geometric or a hyper-geometric
distribution. The geometric distribution characterization re-
quires only the first moment, while the hyper-geometric dis-
tribution characterization requires the first two moments of
the lengths of the periods. The question that usually arises
is whether these approximations are accurate.

We consider a single server multiplexer with two homo-
geneous input sources and a buffer size taken from the set
{10, 20, 30,40,50,60}. The distribution of the on and off pe-
riods of the original input source is a mixture of two deter-
ministic distributions. The inter-arrival time lag-1 correla-
tion (refer to section 4.2) is equal to 0.048. The parameters of
the PDF of the on and off periods are shown in table 1. The
throughput of a single source is equal to 0.296, the mean
on and mean off periods are 50 and 119 respectively, and
the CV2, and the C'Vo2ff (the squared coefficient of varia-
tion of the lengths of the on and off periods) are 2.332 and
13.150 respectively. Given these values we can approximate
the original source by an IBP source and subsequently by a
source with a hyper-geometric distribution of the on and off
periods.

In figure 4 we plot the mean number of cells and cell
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Figure 4: Effect of the distribution of the on and off periods on the multiplexer’s performance. (a) Cell loss probability, (b)

Mean number of cells.

On period Off period
Length | Prob. | Length | Prob.
1 0.708 20 0.950
169 0.292 | 2000 0.050

Table 1: Parameters of the PDF of the on and off periods.

loss probability for the original source, the single-moment
approximation by an IBP source, and the two-moment ap-
proximation by a source with the hyper-geometric on and off
periods. The IBP model underestimates the cell loss prob-
ability and overestimates the mean number of cells (except
when the buffer size increases above 52). This suggests that
the IBP is not a faithful model for the original source of
table 1.

The results in figure 4, demonstrate the inaccuracy of the
two-moment approximation when the buffer size is finite.
The approximate source model with two-moments matching
provides an underestimation of the cell loss probability and
an overestimation of the mean number of cells. This shows
that the two-moment approximation may not be accurate in
all cases. We note here that in [16], Sohraby introduced a
model for handling arbitrary on/off sources. The model gives
an approximate upper bound for the cell loss probability as
a function of the first two moments of the on and off peri-
ods assuming a multiplexer with an infinite buffer size. As
shown in the above example, it may not be accurate to use
this approximation for small values of buffer size.

4.2 Effect of the Inter-arrival Time Corre-
lation of Traffic Sources on the Multi-
plexer’s Performance

For an arbitrary on/off source, the lag-1 correlation coef-

ficient of the inter-arrival time is given by Galmés [§]:

 fal)— %
- 2 1
1+CV2, - &

on

¢1

where fon (1) is the probability that the on period is of length
1, on is the mean on period, and CVOZN is the squared co-
efficient of variation of the off period length. It is possible
to identify some distributions for which the value of ¢; is
non-negligible. The key to obtaining such distributions is to
concentrate a large portion of the probability mass at length
1 of the on period distribution, i.e. make f,,(1) as large
as possible while satisfying some of the other source charac-
teristics. For our example here, we use the mizture of two
deterministic distributions which is a distribution that can
be of length L; or L, with probabilities p and 1 — p respec-
tively. We fix one of the deterministic lengths to be equal
to 1 and let the other be of a variable length L. Given a
particular value of on and ¢; and the off period distribution,
we can find values for p and L which would satisfy the given
values of on and ¢; using a simple enumerative algorithm.

To study the effect of the inter-arrival time correla-
tion on the multiplexer behavior, we consider the case of
two input homogeneous sources where the off period of
a source has a geometric distribution with mean 92.7787
and the mean length of the on period is fixed at 50,
making the source’s throughput equal to 0.35. Using the
mixture of two deterministic distributions for the on pe-
riod, we vary ¢; so that it takes values from the set
{0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45}. The value of p
and L satisfying the given parameters is then calculated.
The cell loss probability and the mean number of cells in the
multiplexer queue are shown in figure 5.

We note that by increasing the lag-1 correlation, the cell
loss probability and the mean number of cells increase. As it
can be seen from figure 5, the cell loss probability increases
more sharply than the mean number of cells with the increase
of the correlation coefficient. The mean number of cells is
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Figure 5: Effect of correlation on the multiplexer’s performance. Buffer Size = 40, two input on/off sources with hyper-
geometric on and off periods. (a) Cell loss probability, (b) Mean number of cells.

almost constant and increases very slowly with the increase
of the correlation coefficient.

4.3 Effect of the Squared Coefficient of
Variation of the on and off periods on
the Multiplexer’s Performance

Using the hyper-geometric distribution we study the ef-
fect of the squared coefficient of variation of the on and off
periods, respectively CV2 and C’fof, on the multiplexer’s
performance. By specifying the mean and squared coefficient
of variation of the period length, it is possible to fit a hyper-
geometric distribution given some conditions are met by the
specified mean and coefficient of variation ( see [4] for more
details).

We consider a multiplexer with 40 cells buffer with two
input sources. Each source has mean on and off periods fixed
at 100 and 150 respectively. CV?2 and C’fof take values
from the set {1.0,5.0,10.0,15.0.20.0}. We show the results
obtained in figure 6. Note that by increasing the C'V%, while
C'Vosz is kept constant, both the cell loss probability and
mean number of cells increase. Also, note that the rate of
increase of the mean number of cells and cell loss probability
when CV?2 € [1,5] is larger than for the rest of the values.
Moreover, for larger values of C'Vosz, the rate of increase of
cell loss probability and mean number of cells as a function
of C'V2, is relatively slower than for smaller values of C'Vosz.
When increasing C’V02ff while CV2, is kept constant the cell
loss probability increases while the mean number of cells
decreases.

5 Conclusions
We introduced a methodology for studying finite buffer sta-

tistical multiplexers with arbitrary on/off sources input. The
methodology is computationally expensive in terms of CPU

and storage requirements. However, it is quite versatile and
can be used to handle different types of on/off and more gen-
eral traffic sources. The results obtained indicate the need
for capturing the effect of the distribution of the period on
call admission control and bandwidth allocation in an ATM
network.

An interesting extension to this work would be to analyze
the case of slow sources where the speed of incoming links
to the multiplexer is less then the speed of the output link.
Another natural extension would be to consider variable bit
rate sources with more than two states.
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